The abelian complexity of the paperfolding word

نویسندگان

  • Blake Madill
  • Narad Rampersad
چکیده

We show that the abelian complexity function of the ordinary paperfolding word is a 2-regular sequence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelian Properties of Words

We say that two finite words u and v are abelian equivalent if and only if they have the same number of occurrences of each letter, or equivalently if they define the same Parikh vector. In this paper we investigate various abelian properties of words including abelian complexity, and abelian powers. We study the abelian complexity of the Thue-Morse word and the Tribonacci word, and answer an o...

متن کامل

Avoiding Abelian Powers in Binary Words with Bounded Abelian Complexity

The notion of Abelian complexity of infinite words was recently used by the three last authors to investigate various Abelian properties of words. In particular, using van der Waerden’s theorem, they proved that if a word avoids Abelian k-powers for some integer k, then its Abelian complexity is unbounded. This suggests the following question: How frequently do Abelian k-powers occur in a word ...

متن کامل

An Irrationality Measure for Regular Paperfolding Numbers

Let F(z) = ∑ n>1 fnz n be the generating series of the regular paperfolding sequence. For a real number α the irrationality exponent μ(α), of α, is defined as the supremum of the set of real numbers μ such that the inequality |α − p/q| < q−μ has infinitely many solutions (p, q) ∈ Z × N. In this paper, using a method introduced by Bugeaud, we prove that μ(F(1/b)) 6 275331112987 137522851840 = 2....

متن کامل

A New Approach to the 2-Regularity of the ℓ-Abelian Complexity of 2-Automatic Sequences

We prove that a sequence satisfying a certain symmetry property is 2-regular in the sense of Allouche and Shallit, i.e., the Z-module generated by its 2-kernel is finitely generated. We apply this theorem to develop a general approach for studying the `-abelian complexity of 2-automatic sequences. In particular, we prove that the period-doubling word and the Thue–Morse word have 2-abelian compl...

متن کامل

A new approach to the $2$-regularity of the l-abelian complexity of 2-automatic sequences

We prove that a sequence satisfying a certain symmetry property is 2-regular in the sense of Allouche and Shallit, i.e., the Z-module generated by its 2-kernel is finitely generated. We apply this theorem to develop a general approach for studying the l-abelian complexity of 2-automatic sequences. In particular, we prove that the period-doubling word and the Thue–Morse word have 2-abelian compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 313  شماره 

صفحات  -

تاریخ انتشار 2013